A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles
نویسندگان
چکیده
Battery energy storage management for electric vehicles (EV) and hybrid EV is the most critical and enabling technology since the dawn of electric vehicle commercialization. A battery system is a complex electrochemical phenomenon whose performance degrades with age and the existence of varying material design. Moreover, it is very tedious and computationally very complex to monitor and control the internal state of a battery’s electrochemical systems. For Thevenin battery model we established a state-space model which had the advantage of simplicity and could be easily implemented and then applied the least square method to identify the battery model parameters. However, accurate state of charge (SoC) estimation of a battery, which depends not only on the battery model but also on highly accurate and efficient algorithms, is considered one of the most vital and critical issue for the energy management and power distribution control of EV. In this paper three different estimation methods, i.e., extended Kalman filter (EKF), particle filter (PF) and unscented Kalman Filter (UKF), are presented to estimate the SoC of LiFePO4 batteries for an electric vehicle. Battery’s experimental data, current and voltage, are analyzed to identify the Thevenin equivalent model parameters. Using different open circuit voltages the SoC is estimated and compared with respect to the estimation accuracy and initialization error recovery. The experimental results showed that these online SoC estimation methods in combination with different open circuit voltage-state of charge (OCV-SoC) curves can effectively limit the error, thus guaranteeing the accuracy and robustness.
منابع مشابه
Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation
As the world moves toward greenhouse gas reduction, there is increasingly active work around Li-ion chemistry-based batteries as an energy source for electric vehicles (EVs), hybrid electric vehicles (HEVs) and smart grids. In these applications, the battery management system (BMS) requires an accurate online estimation of the state of charge (SOC) in a battery pack. This estimation is difficul...
متن کاملImproved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath
Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...
متن کاملOnline Battery Electric Circuit Model Estimation on Continuous-Time Domain Using Linear Integral Filter Method
Equivalent circuit models (ECMs) are widely used in battery management systems in electric vehicles and other battery energy storage systems. The battery dynamics and the model parameters vary under different working conditions, such as different temperature and state of charge (SOC) levels, and therefore online parameter identification can improve the modelling accuracy. This paper presents a ...
متن کاملA new control strategy for energy management in Plug-in Hybrid Electric Vehicles based on Fuzzy Cognitive Maps
In this paper, a new control strategy for energy management in Plug-in Hybrid Electric Vehicles (PHEVs) using Fuzzy Cognitive Map (FCM) is presented. In this strategy, FCM is used as a supervisory control such that the State of Charge (SoC) of the battery is kept in the acceptable range and fuel consumption per kilometer is reduced, in addition to providing the request power. Since this method ...
متن کاملMulti-level Energy Management Strategy for Fuel Cell Vehicle Based on Battery Combined Efficiency and Identification of Vehicle Operation State
The design of energy management strategy is one of the main challenges in the development of fuel cell electric vehicles. The proposed strategy should be well responsive to provide demanded power of fuel cell vehicle for motion, acceleration, and different driving conditions, resulting in reduced fuel consumption, increased lifetime of power sources and increased overall fuel efficiency. The pu...
متن کامل